Discarding Functional Residues from the Substitution Table Improves Predictions of Active Sites within Three-Dimensional Structures
نویسندگان
چکیده
Substitutions of individual amino acids in proteins may be under very different evolutionary restraints depending on their structural and functional roles. The Environment Specific Substitution Table (ESST) describes the pattern of substitutions in terms of amino acid location within elements of secondary structure, solvent accessibility, and the existence of hydrogen bonds between side chains and neighbouring amino acid residues. Clearly amino acids that have very different local environments in their functional state compared to those in the protein analysed will give rise to inconsistencies in the calculation of amino acid substitution tables. Here, we describe how the calculation of ESSTs can be improved by discarding the functional residues from the calculation of substitution tables. Four categories of functions are examined in this study: protein-protein interactions, protein-nucleic acid interactions, protein-ligand interactions, and catalytic activity of enzymes. Their contributions to residue conservation are measured and investigated. We test our new ESSTs using the program CRESCENDO, designed to predict functional residues by exploiting knowledge of amino acid substitutions, and compare the benchmark results with proteins whose functions have been defined experimentally. The new methodology increases the Z-score by 98% at the active site residues and finds 16% more active sites compared with the old ESST. We also find that discarding amino acids responsible for protein-protein interactions helps in the prediction of those residues although they are not as conserved as the residues of active sites. Our methodology can make the substitution tables better reflect and describe the substitution patterns of amino acids that are under structural restraints only.
منابع مشابه
The Effect of Substitution of a Zn Atom in Cdn-1TenClusters (n=1-10)
In this research, structural and electronic properties of ZnCdn-1Ten clusters (n=1-10) have been studied by formalism of density functional theory and using the projector augmented wave within local density approximation. The structural properties (such as bond length/angle and coordination number), electronic and optical properties (such as binding energy, Kohn-Sham spect...
متن کاملNetwork analysis of protein structures identifies functional residues.
Identifying active site residues strictly from protein three-dimensional structure is a difficult task, especially for proteins that have few or no homologues. We transformed protein structures into residue interaction graphs (RIGs), where amino acid residues are graph nodes and their interactions with each other are the graph edges. We found that active site, ligand-binding and evolutionary co...
متن کاملText Mining Improves Prediction of Protein Functional Sites
We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text...
متن کاملHomology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases.
Subtilases are members of the family of subtilisin-like serine proteases. Presently, greater than 50 subtilases are known, greater than 40 of which with their complete amino acid sequences. We have compared these sequences and the available three-dimensional structures (subtilisin BPN', subtilisin Carlsberg, thermitase and proteinase K). The mature enzymes contain up to 1775 residues, with N-te...
متن کاملIdentification of specificity determining residues in enzymes using environment specific substitution tables
Environment speci c substitution tables have been used e ectively for distinguishing structural and functional constraints on proteins and thereby identify their active sites (Chelliah et al. (2004)). This work explores whether a similar approach can be used to identify speci city determining residues (SDRs) responsible for cofactor dependence, substrate speci city or subtle catalytic variation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Computational Biology
دوره 4 شماره
صفحات -
تاریخ انتشار 2008